

Supercritical CO₂-assisted introduction of Cu into Zr-MOFs

<u>Maciej Róziewicz</u>a, Joanna Oczeretkoa, Janusz Trawczyńskia, Agata Łamacza

Wrocław University of Science and Technology

^aDepartment of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland

Introduction:	Method:	
Development of MOF-based catalysts for CO ₂ conversion	Sc-CO ₂ -assisted introduction of Cu into UiO-66 or MOF-808 structures 66_Cu(OAc) ₂	*one-pot impregnation & reduction
Target: development of method for obtaining materials with well dispersed and accessible active sites.	CuNPs	$ \begin{array}{c} Cu(acac)_{2} \\ \downarrow & \downarrow \\ & \downarrow & 66_Cu(acac)_{2}^{*} \\ & \downarrow & 66_Cu(acac)_{2}^{*} \\ & 808_Cu(acac)_{2} \end{array} $

Results and discussion:

Material	S _{BET} [m ² · g ⁻¹]
UiO-66 (pristine)	1335
66_Cu(OAc) ₂	1037
66_Cu(acac) ₂	668
66_Cu(acac) ₂ *	1023
66_CuNPs	895
MOF-808 (pristine)	1356
808_Cu(OAc) ₂	1131
808_Cu(acac) ₂	1362

surface area due to the filling of the pores.

Results of TGA shows that thermal stability of the composites were worsened compared with the pristine materials.

In UiO-66 materials, use of co-solvent may have induced formation of additional structural defects, resulting in worse thermal stability than for samples processed in sole sc-CO₂.

The financial support from the National Science Centre (project no. 2019/35/D/ST5/03440 "Metal-organic frameworks for catalytic conversion of CO2") is gratefully acknowledged.